About 592 results found.
up J.0 Section J Introduction ›
/bin/sh # # A script for creating an iptables firewall # # # Start by clearing iptables # iptables -F iptables -t nat -F iptables -t mangle -F iptables -X iptables -t nat -X iptables -t mangle -X # # Define our interfaces, Squid IP, and Squid port # WAN="p4p1" LAN="p4p2" SQUIDIP="192.168.10.10" SQUIDPORT="3129" # # Create log files to help troubleshooting. (We can comment out when not needed) # # iptables -A OUTPUT -j LOG # iptables -A INPUT...
What this information means and where it comes from 1 t**********[email protected] 2 k****[email protected] 3 m**********[email protected] 4 s**********[email protected] 5 s**********[email protected] 6 j******[email protected] 7 r*******[email protected] 8 t*****[email protected] 9 a**********[email protected] 10 s*******[email protected] 11 c**********[email protected] 12 j*********[email protected] 13 b**********[email protected] 14 g**********[email protected] 15 s*****[email protected] 16 0********[email protected] 17 a***[email protected] 18...
-d 10.0.0.0/8 -j ACCEPT -A FORWARD -i tun+ -d 10.66.0.0/16 ! -s 10.0.0.0/8 -j ACCEPT -A FORWARD -o tun+ -s 10.66.0.0/16 ! -d 10.0.0.0/8 -j ACCEPT -A FORWARD -o tun+ -d 10.66.0.0/16 !
It is then a matter of drawing at random a segment within \(AB\) whose length is included between \(j\) and \(j + dj\) for \(0\leq j\leq AB\) . Then the probability of this event is: \[ \tag{1} P_{j}=f(j)\ dj=\frac{2}{a}\left( 1-\frac{j}{a} \right)dj \] for a = AB.
--syn -m state --state NEW -s 0/0 -j DROP # Accept inbound TCP packets /sbin/iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT /sbin/iptables -A INPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT /sbin/iptables -A INPUT -p tcp --dport 80 -m state --state NEW -j ACCEPT /sbin/iptables -A INPUT -p tcp --dport 443 -m state --state NEW -j ACCEPT # Accept inbound UDP packets /sbin/iptables -A INPUT -p udp...
Therefore, we can calculate any event of the group, for example: P[X1=x1, X2=x2]=Sum[Product[pi^xi.(1-pi)^(1-xi) , {i=1..n}] + Sum[Dij.(-1)^(xi+xj), {i,j=1..n, i<j}] , {j=3..n, xj=0..1}] =Sum[Product[pi^xi.(1-pi)^(1-xi) , {i=1..n}], {j=3..n, xj=0..1}] + Sum[Dij.(-1)^(xi+xj), {i,j=1..n, i<j}] , {j=3..n, xj=0..1}] =p1^x1.(1-p1)^(1-x1).p2^x2.(1-p2)^(1-p2) + D12.(-1)^(x1+x2).2^(n-2)...
Watkins Aston Villa 14 14 6 6 32 32 0.58 155 155 73 19% 48% 7 Matheus Cunha Wolves Matheus Cunha Wolves 14 14 4 4 27 27 0.58 155 155 88 16% 41% 10 J. Mateta Crystal Palace J. Mateta Crystal Palace 13 13 2 2 30 30 0.51 177 177 58 22% 47% 11 J. Kluivert Bournemouth J. Kluivert Bournemouth 12 12 6 6 28 28 0.55 163 163 56 21% 50% 11 J.
J-version demo A free J-version demo of v0.2.0 alpha was released on Google Play on an unknown release date. In mid-2014, it was removed from Google Play.
/mad.sh:1 181 : debugHtml "github" "head_inst_curlimp$j" "${file_header}" ./mad.sh:1 229 : tor_curl_request --insecure -L "$download_url" --continue-at - --output "$file_path" .